Get Your Pen and Paper Ready – Entrainment Ratios

This tutorial is best experience with a pencil and paper. Before I get into a discussion about high flow oxygen therapy you really need to understand flow. Conventional facemasks, Venturis and nasal cannula deliver modest flows of oxygen to the patient, but to ensure a correct FiO2, oxygen must be blended with air – in the airway or in the device. That air is drawn into the system by entrainment either from the room via the mask or mouth or injected in the case of Venturis into the breathing system. In any case – the inward flow of gas is determined, principally by the patient’s inspiratory effort and the concentration of oxygen during peak inspiratory flow is, hopefully, kept constant. In general, to keep FiO2 constant – a gas flow of at least 30L/min is required. Most devices deliver 40 liters or more, but only at lower FiO2 levels. It is essential to understand that, in this case, the 30 to 40L is NOT high flow – because it is “draw over” flow generated by the patient. High flow, as we will see in the next tutorial is delivered to the patient. For example – when delivering 24% and 28% oxygen to a patient – the total flow may be 44L but the fresh gas flow is only 2 to 4L. The remainder is entrained. This tutorial explains the concept of gas entrainment and how to calculate entrainment ratios and flow rates. If you have never encountered this concept before, I guarantee that you will learn something!

Equations Used In This Tutorial:

The FiO2 vs Flow Equation FiO2 = (Air Flow x 0.21) + (O2 Flow) / Total Flow

The Air:Oxygen Equation: Air/Oxygen = (100% -FiO2)/(FiO2 – 21%)

Oxygen Flow Equation: (Total Flow x (FiO2 -21))/79

Oxygen Therapy: Variable vs Fixed Performance Devices

Oxygen is probably the most used and misused drug in a hospital. The purpose of oxygen therapy is to restore the PaO2 or SpO2 to a safe level for that patient. One of the major issues with targeted oxygen therapy is the problem of peak inspiratory flow.

During peak inspiration the FiO2 must be constant. That means that flow delivery must meet flow demand. Oxygen therapy can be delivered with variable or fixed performance devices. Variable performance devices include nasal cannula and simple (“Hudson”) facemasks. In both cases oxygen and air are blended in or near the airway. Nasal cannula are remarkably efficient and can deliver low inspired oxygen concentrations. Due to issues with dead space and rebreathing, simple facemasks are unreliable below 35% (5L). Both devices struggle where there is rapid breathing, particularly with large tidal volumes.

Venturi devices, which are really jets use a narrow injection port to entrain and blend oxygen and air proximal to the facemask. They are more precise but less efficient (in terms of total flow) than variable performance devices. Performance is remarkably robust between 24% and 40% inspired oxygen. They perform less well with rapid deep breathing particularly at high FiO2 levels. Non rebreather facemasks use a reservoir to store fresh gas during expiration and facilitate the delivery of FiO2 of approximately 80% with 10 to 15 liters of flow. As such they are highly efficient, although unreliable and non titratable. These devices can be used with modest oxygen flows for transporting hypoxic patients, but are short term remedies. @ccmtutorials