Oxygen Therapy: Variable vs Fixed Performance Devices

Oxygen is probably the most used and misused drug in a hospital. The purpose of oxygen therapy is to restore the PaO2 or SpO2 to a safe level for that patient. One of the major issues with targeted oxygen therapy is the problem of peak inspiratory flow.

During peak inspiration the FiO2 must be constant. That means that flow delivery must meet flow demand. Oxygen therapy can be delivered with variable or fixed performance devices. Variable performance devices include nasal cannula and simple (“Hudson”) facemasks. In both cases oxygen and air are blended in or near the airway. Nasal cannula are remarkably efficient and can deliver low inspired oxygen concentrations. Due to issues with dead space and rebreathing, simple facemasks are unreliable below 35% (5L). Both devices struggle where there is rapid breathing, particularly with large tidal volumes.

Venturi devices, which are really jets use a narrow injection port to entrain and blend oxygen and air proximal to the facemask. They are more precise but less efficient (in terms of total flow) than variable performance devices. Performance is remarkably robust between 24% and 40% inspired oxygen. They perform less well with rapid deep breathing particularly at high FiO2 levels. Non rebreather facemasks use a reservoir to store fresh gas during expiration and facilitate the delivery of FiO2 of approximately 80% with 10 to 15 liters of flow. As such they are highly efficient, although unreliable and non titratable. These devices can be used with modest oxygen flows for transporting hypoxic patients, but are short term remedies. @ccmtutorials http://www.ccmtutorials.org

Tutorial 14 Mechanisms of Hypoxemia Part 2

This tutorial explains ventilation perfusion mismatch. It will provide you with a platform for understanding oxygen therapy – which I introduce towards the end. I also deal with the concept of oxygen induced hypercarbia. I guarantee you will learn something.  

Contents of This Tutorials:

Ventilation-Perfusion Relationships

Gravity and Blood and Gas Distribution Through the Lungs

Gas and Blood Distribution Through Diseased Lungs

Simplistic Ventilation-Perfusion From Dead Space to Shunt

Stale Gas Within Alveoli

Ventilation Perfusion Relationships – Slimy, Soggy and Stick Alveolar Units

Supplemental Oxygen Therapy For Bronchopneumonia

“Targeted Oxygen Therapy”

When Does Oxygen Therapy Fail? [Shunt]

COPD Flair

Why Does Hyperoxia Cause Hypercarbia (VQ mismatch theory)

The Haldane Effect

Identifying and Quantifying Hypoxemia

The next part of the course is all about hypoxic respiratory failure. To treat hypoxemia you must understand it. The purpose of this sequence of tutorials is to lead up to discussions on CPAP and PEEP and provide a platform for understanding Pressure Controlled Modes of Ventilation. The first tutorial looks at oxyhemoglobin saturation, why the oxyhemoglobin dissociation curve is essential knowledge for the practicing clinician, how pulse oximeters work and how to quantify hypoxemia (A-aO2 gradient and PaO2/FiO2 ratio).

Tutorial 7: Understanding Ventilatory Failure, Alveolar Gas, Lung Volumes and Dead Space.

Clinicians who work in anesthesiology, intensive care or emergency medicine who are involved in the management of respiratory failure must understand the problem of failure to ventilate: “can’t breathe, won’t breathe.” This long tutorial covers a lot of ground and could be viewed in split sessions.

My principle goal is to give you the tools to work the problem of respiratory failure. Along the way I introduce the alveolar gas equation, ventilation perfusion matching and lung volumes; particularly functional residual capacity. In the second half (from 28:20 onwards), I discuss anatomical and physiological dead space, calculate out the dead space to tidal volume ratio and show how you can be inadvertently increasing physiologic dead space by applying PEEP or neglecting auto-PEEP.

Even if you think you know a lot about this subject, I guarantee that you will learn something.

As always, I welcome feedback.

Don’t Be Scared of Respiratory Physiology – it makes sense (well, most of it anyway!)

Mechanical Ventilation – Setting Up a Ventilator – Flow Patterns

Most bedside practitioners pay little attention to ventilator waveforms – usually just the tidal volume and, occasionally, the pressure waveform. However, mechanical ventilation is all about flow – if there is no flow there is no breath. In this tutorial I will look at flow patterns in patients attached to a ventilator. Patients who breathe spontaneously, without assistance, draw flow from the ventilator, the positive flow in inspiration is hemispheric in appearance, exhalation is a v shape – reflecting elastic recoil. Volume controlled ventilation may be delivered by either constant or decelerating flow, with or without an inspiratory hold (also known as a pause). The flow pattern in pressure control is always decelerating – as airway pressure rises, flow falls. Tidal volumes are variable in pressure control, as the negative pressure deflection during inspiration increases the inspiratory ramp and and hence the tidal volume.

I guarantee you will learn something from this tutorial and will never look at a ventilator the same way again.

Fluids In Hospital Medicine (Part 1)

Intravenous fluid, fluid management, the physiology of body fluids – all relentlessly controversial and complicated issues. I decided a couple of years ago to put together a course that covers the whole spectrum of fluids – from basic chemistry to basic and advanced physiology, applied physiology, fluid and electrolyte disorders and therapy and acid base chemistry. I will also cover diseases and disorders associated with fluids – either as therapies for, or iatrogenic causes of, disease. I am posting Part 1 on the fluids course in its entirety. Subsequent parts of the course will be posted ad-hoc depending on when each tutorial is completed (I will set aside pages on this website for the tutorials in order and as playlists on you-tube). I hope you find this useful. All of the tutorials on this set (plus a number that I have not posted yet) were road tested as Galway University Hospital in 2021-2022.

Pat Neligan Dec 22nd 2022

Introduction to the Course

This is a quick introduction to the course, explaining what I am proposing to cover over four parts.

Preliminary Material

This is some really basic chemistry that will allow you to understand the content of subsequent tutorials.

Tutorial 1 Water and Concentrations

This tutorial convers the physical properties of water, what a mole and mmol is and what is g%. I use dextrose as my major example and look at the different ways that glucose concentration is measured in the USA (mg/dl) versus the rest of the world (mmol/L). The end of the tutorial covers the alcohol and calorie content of drinks and drink driving limits.


1 Supplement

I rather like caffeinated drinks and am frequently the subject of sanctimonious comments about my caffeine habit. This tutorial covers caffeine content. Subsequently I look at the issue of 1% versus 2% lidocaine and explain exactly what 1:200,000 epinephrine (adrenaline) is.

Tutorial 2 Salts

This tutorial explains how to calculate out the quantity of electrolytes released from salts as they are dissolved in intravenous fluids. I also take an early look at hypertonic saline solutions.

Tutorial 2 Supplement 1 – More Salt

This tutorial goes through a couple of conundrums where I look at intravenous fluid products and show you how to calculate out the electrolyte contents when you are only given the salts in g/L

Tutorial 2 Supplement 2

This is an early look at calcium supplement products that we typically use in critical care. What exactly is the difference between Calcium Chloride and Calcium Gluconate?

Tutorial 3 Osmosis

Fundamental to understanding how water behaves in body fluids is the concept of osmosis. It is also very important when we visit renal replacement therapies in Part 4 of the course. In this tutorial I use traumatic brain injury and mannitol as my main example.

Tutorial 4 Osmolality and Tonicity

What is the difference between osmolality and osmolarity? What are mOsm? How do you calculate Osmolarity? This tutorial looks at the concept of Osmolality and the Tonicity of intravenous fluids, and why understanding this concept is essential for practitioners of hospital medicine. The clinical scenario is of a patient with hypotonic hyponatremia. I will revisit hypertonic saline solutions and look at the concept of the Osmotic Co-efficient.

Tutorial 5 Electrolyte Distribution

This tutorial looks at the distribution of electrolytes in the body – between the intracellular and extracellular compartments. I look at the needs of a patient who is unable to take oral fluids and electrolytes. I emphasize the importance of maintenance fluids in this situation rather than resuscitation fluids. This tutorial also looks at the interstitial matrix and how it is vulnerable to hydraulic fracturing (“fracking”) caused by intravenous fluids.

This is the end of Module 1.


Tutorial 6 The Adaptive Perioperative Stress Response

Whether we are injured, assaulted or undergo surgery, our bodies respond with an inflammatory response that involves endocrine, metabolic and immune components. The “adaptive” stress response is predictable and its magnitude mirrors the degree of injury. To understand emergency and perioperative medicine and critical illness you must understand the stress response. Having explained the basic physiology, I then go on to discuss fluids and fluid balance and describe the conventional approach (that I do not necessarily subscribe to) to perioperative fluid therapy.

Tutorial 7 Critical Illness and Resuscitation

A patient presents with an “acute abdomen.” His bowel is obstructed and he is losing fluid and becoming both dehydrated and electrolyte depleted. This tutorial looks at the different types of body fluids that may be lost – how they all resemble extracellular fluid and suggests a type of fluid that can be used for resuscitation. I then progress to describing the maladaptive stress response of critical illness, and why it is associated with capillary leak syndrome. There follows a discussion of fluid overload and the need for de-resuscitation. Finally I introduce the topic of chronic critical illness and death.

Tutorial 8 The Macro Circulation

What happens to the body when there is major blood loss? This tutorial looks at the different components of the circulation and how blood flow is redistributed in shocked states. I also look at the assessment of hypovolemic shock, oxygen consumption versus delivery and the mixed venous oxygen saturation. Finally I address resuscitation strategies in acute blood loss.

This ends Part 1 Module 2.


Tutorial 9 Venous Return

Since the 1970s the venous (and lymphatic) side of the circulation and the right side of the heart seem to have been ignored by doctors. At worst is the widely held belief that central venous pressure represents an appropriate measure of blood volume and resuscitation status. This tutorial looks at the concept of cardiac output versus venous return. I discuss the Guyton concept of mean systemic pressure, the stressed and unstressed blood volume and vascular compliance. I then go on to look at venous return during anesthesia, the impact of low and high dose vasopressors and the impact of fluid overload.

Tutorial 10 The Microcirculation & Capillaries

For the past 125 years or so, the vast majority of clinicians have based their understanding about transendothelial fluid flux on the work of Ernest Starling. Problem is that his hypothesis – the Starling Principle – is wrong. The presence of the capillary glycocalyx and enhanced understanding of fluid kinetics has changed our view of fluid therapy, in particular the role of colloids in treating critically ill patients. This tutorial looks at the capillary network, the traditional Starling method, the “Revised” Starling method, the glycocalyx, oncotic pressure gradients, the impact of fluid extravascation and the lymphatic system.

Tutorial 11 Albumin & Colloids

Colloids, whether they are hydroxyethyl starches, dextrans, gelatins or even albumin, were popular resuscitation fluids until the 2010s. Multiple studies failed to demonstrate the effectiveness of these agents. However, the use of hyperoncotic human albumin solution has gained popularity, based on no real evidence, in recent years. Given our knowledge of the microcirculation, is there any compelling reason to be treating a patient with human albumin solution in the 2020s?

Tutorial 12 Fluid Kinetics

In this last tutorial in Part 1 of this course, we are returning to the operating room. What happens to intravenous fluid once it is injected into the veins a) in normal volunteers, b) during anesthesia, c) during the stress response? This tutorial is all about fluid or volume kinetics and is based on the work of Robert Hahn, from Sweden. I discuss fast versus slow boluses, resuscitation with crystalloid in hypovolemic states, the urinary output during surgery and what happens during hypervolemia.

If you have enjoyed this course, please subscribe on youtube and post lots of likes and positive comments. I will do my best to answer queries and comments below, time permitting.